
5 Fundamental theorem of algebra and other facts about polynomi-
als

5.1 Polynomials and their roots. Basic facts

5.2 Cardano’s formula and complex numbers

5.3 Geometric interpretation of complex numbers

5.4 The fundamental theorem of algebra

Now that we got some experience working with complex numbers, I can give maybe not one hundred
percent rigorous but hopefully very convincing proof of one of the most important facts in basic
mathematics: the fundamental theorem of algebra. To prepare for the proof, let me start with the
definition of an auxiliary function, which will be the key tool I will use in the proof below.

Consider the complex variable z = ρ(cos θ + i sin θ) for some ρ > 0 and θ ∈ [0, 2π]. When the
variable θ changes from 0 to 2π, the corresponding point z will travel along the full circle of radius ρ
on the complex plane C, let me call this circle C. Now consider any continuous function f of complex
argument z. When z travels along C complex number w = f(z) travels along some closed curve Γ on
another complex plane (u, v).

Definition 5.1. Consider the vector that connects the origin O with the point f(z) on the plane (u, v).
By definition, the order of the point O for function f with respect to the curve C is the number of full
turns this vector completes when z travels along the curve C.

To get a feeling of this definition, explain carefully why the order of f(z) = const is zero, the order
of f(z) = z is one, the order of f(z) = z2 is two, and generally the order of f(z) = zn is equal to n.

Now, finally, let me define the function φf (ρ), which is the order of O for function f when the
circle C has the radius ρ. From the given definition φf is well defined at any point when f(z) ̸= 0,
and accepts only integer values 0,1,2,. . . . Moreover, it is almost obvious that if f is continuous and
φf is defined for all ρ then it also must be continuous. This implies immediately that if f(z) ̸= 0 for
all z then φf (ρ) must be constant because the only continuous integer valued function is a constant.
Ok, everything is ready for the proof.

Theorem 5.2 (Fundamental theorem of algebra). If polynomial p ∈ C[z] is such that

p(z) = c0 + c1z + c2z
2 + . . .+ cn−1z

n−1 + zn, n ≥ 1, (5.1)

then there exists a point ξ ∈ C such that p(ξ) = 0.

Proof. By contradiction. Assume that p(z) ̸= 0 for any z ∈ C. It implies that φp(ρ) is defined for all
ρ > 0. Since p is a continuous function, hence φp is also continuous and hence must be constant. We
have that c0 ̸= 0 (otherwise zero would be the root and hence theorem would be proved), therefore,
when ρ → 0 the variable z approaches zero, and hence p(z) ≈ c0, which yields that φp(0

+) = 0.
On the other hand, if we take ρ sufficiently large, then p(z) ≈ zn (the highest power of our

polynomial), and therefore φp(ρ) must be n, which supplies the required contradiction.
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To fully justify the last sentence let me take ρ > 1 and ρ > |c0|+ |c1|+ . . .+ |cn−1|. In this case

|p(z)− zn| = |c0 + c1z + . . . cn−1z
n−1| ≤

≤ |c0|+ |c1||z|+ . . .+ |cn−1||z|n−1 =

= |c0|+ |c1|ρ+ . . .+ |cn−1|ρn−1 =

= ρn−1

(
|c0|
ρn−1

+
|c1|
ρn−2

+ . . .+ |cn−1|
)

≤

≤ ρn−1(|c0|+ |c1|+ . . .+ |cn−1|) <
< ρn = |z|n.

In words: for sufficiently large ρ the distance from the point p(z) to the point zn is strictly less than
the distance from O to the point zn, and hence the line segment connecting p(z) and zn cannot pass
through the origin. Therefore we can always transform the point p(z) into the point zn for all p(z) ∈ Γ
without changing the value of φp(ρ), which finishes the proof of this theorem. �

Remark 5.3. I copied this proof from Courant, R., & Robbins, H. (1996). What is Mathematics?:
An elementary approach to ideas and methods. Oxford University Press, USA, whose first edition was
published in 1941. It is known that in the Soviet Union exactly the same proof was given by Andrey
Nikolaevich Kolmogorov around 1937 in his lectures on the fundamental theorem of algebra. In the
Russian school this proof got a name “The lady with the dog ” (after one of the most famous short
stories by Anton Chekhov) meaning that if a lady makes n laps around a house having a dog on a
leash then the dog will make exactly the same n turns around the house no matter how much it runs
around the owner.

Remark 5.4. To make a proof completely rigorous one must be more careful with the definition of the
order of O for given f , and it must be proved that φf stays constant with continuous transformations
of f that do not pass through f(z) = 0. This all can be done but requires a somewhat more advanced
mathematics, hence will be omitted in these notes.

Putting together the fundamental theorem of algebra and the preliminary facts we proved about
polynomials, I immediately obtain

Corollary 5.5. Consider p ∈ C[z] of the form

p(z) = c0 + c1z + . . .+ cn−1z
n−1 + cnz

n, cn ̸= 0, n ≥ 1.

Then there exist ξ1, . . . , ξk ∈ C such that

p(z) = cn(z − ξ1)
α1(z − ξ2)

α2 . . . (z − ξk)
αk ,

where ξl ̸= ξj and αj ∈ N and α1 + . . .+ αk = n.

Remark 5.6. The constants αj are called the multiplicities of the roots ξj . Therefore the corollary
can be restated as “Any nonconstant polynomial of degree n has exactly n complex roots if they are
counted according to their multiplicities.”
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Proof. Since cn ̸= 0 I can consider q(z) = p(z)
cn

, which has the same form as in Theorem 5.2 and hence
must have complex root ξ1 ∈ C. We know that it implies that q(z) = (z − ξ1)g(z), where g has the
degree n− 1 and moreover the coefficient at zn−1 is 1, hence I can apply Theorem 5.2 again obtaining
q(z) = (z− ξ1)(z− ξ2)h(z), where h has degree n−2 and so on. Note that here ξ1 and ξ2 can coincide.
Returning to p and grouping together the identical roots finishes the proof. �

Now I can say even more.

Corollary 5.7 (Vieta’s theorem). Let

p(z) = c0 + c1z + . . .+ cn−1z
n−1 + cnz

n, cn ̸= 0, n ≥ 1.

and let ξ1, . . . , ξn be its roots, which can be identical in this list. Then

ξ1 + . . .+ ξn = −cn−1

cn
,

(ξ1ξ2 + . . . ξ1ξn) + (ξ2ξ3 + . . .+ ξ2ξn) + . . .+ ξn−1ξn =
cn−2

cn
,

...

ξ1 . . . ξn = (−1)n
c0
cn

.

Proof. These formulas follow from the last corollary by expanding the product cn(z − ξ1)
α1(z −

ξ2)
α2 . . . (z − ξk)

αk and using the fact that two polynomials are equal if and only if the coefficients at
equal powers are equal. �

Remark 5.8. It may be useful to derive the formulas in Vieta’s theorem for the cases n = 2 and
n = 3.

Now consider a polynomial

p(x) = a0 + a1x+ . . .+ an−1x
n−1 + anx

n, an ̸= 0, n ≥ 1, aj ∈ R.

I claim that

Corollary 5.9. Polynomial p with real coefficients can be written as the product of linear and quadratic
polynomials with real coefficients.

Proof. To prove this corollary I need two more facts. First I claim that if ξ ∈ C is a root of polynomial
p with real coefficients then its conjugate ξ̄ is also a root. It follows from the fact that conjugate of a
sum is a sum of conjugates, conjugate of a product is a product of conjugates, and conjugate of a real
number is real (fill in all the details). And second, if I have two conjugate roots ξ1 = ξ̄2 = α+ iβ then
the product

(x− ξ1)(x− ξ2) = x2 − (ξ1 + ξ2)x+ ξ1ξ2 = x2 − 2Re(ξ1)x+ |ξ1|2

is a quadratic polynomial with real coefficients. Now the application of Corollary 5.5 finishes the
proof. �
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5.5 Another proof of the fundamental theorem of algebra

There are a lot of various proofs of the fundamental theorem of algebra. Here I would like to present
a proof1 that relies on the theory of ordinary differential equations — the mathematical topic, which
is very close to my own research. I will certainly need a few facts from the classical ODE theory, but
nothing beyond first proof based ODE course.

Theorem 5.10 (Fundamental theorem of algebra). Any nonconstant polynomial p has at least one
root ξ ∈ C.

Proof. Let p(z) be nonconstant polynomial. Consider the ordinary differential equation (ODE)

dz

dt
= − p(z)

p′(z)
, z(0) = z0 ∈ C. (5.2)

(If you never dealt with complex differential equations, think of a system of two real differential
equations, since t here is a real variable.) This ODE is defined everywhere except at the points where
p′(z) = 0, but since p′ is a polynomial as well, there are only finitely many such points. In the following
we assume that for any such point z that p′(z) = 0, p(z) ̸= 0 otherwise the theorem is proved and we
can stop here.

The nicest thing about the initial value problem (5.2) is that it has the solution z(t; z0) (which
exists by the existence and uniqueness theorem at least locally for all such z0 for which p′(z0) ̸= 0)
that satisfies

p(z(t; z0)) = e−tp(z0). (5.3)

Indeed, the initial condition is satisfied, and the differentiation yields that

p′(z(t; z0))z
′(t; z0) = −e−tp(z0),

hence, after plugging z′ into (5.3), z(t; z0) satisfies the equation. Equation (5.3) implies that

|p(z)| = e−t|p(z0)|,

that is, |p(z)| monotonically (exponentially) decreasing along the solutions z(t; z0). This means, first
of all, that there is sufficiently large disk such that the solutions to (5.2) cannot leave this disk (since
for large z |p(z)| → ∞). Inside this disk the only problematic points are those that satisfy p′(z) = 0,
but we already know that there are only finitely many of them. Moreover, solution (5.3) means that
the movement in the plane of the variable p(z) is isogonal, since arg p(z) = arg p(z0) for all t, hence
it is always possible to choose such z0 that z(t; z0) will miss all the roots of p′ together with small
neighborhoods of these points. But this implies that there are always solutions to (5.2) that do not
approach a boundary of a compact set on the complex plane C and therefore, by another important
classical theorem of ODE theory, are defined for all times t ∈ (0,+∞), and hence I can pass to the
limit t → ∞ in (5.3) yielding that there must be a point ξ ∈ C such that p(ξ) = 0. �

1I am copying this proof from Anton, R., Mihalache, N., & Vigneron, F. (2023). A short ODE proof of the Fundamental
Theorem of Algebra. The Mathematical Intelligencer, 1-2.
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5.6 Descartes’ rule of signs

Here I will give a full proof of the so-called Descartes’ rule of signs that allows to get an upper estimate
on the number of real roots of the given polynomial. Let me start with introducing the notation. In
the following I consider the polynomial

p(x) = a0x
b0 + a1x

b1 + . . .+ anx
bn , (5.4)

where 0 ≤ b0 < b1 < . . . < bn are integers and a0, a1, . . . , an are nonzero real numbers. Consider the
sequence (a0, a1, . . . , an) and call a variation in sign if aj−1aj < 0 in this sequence. Let v(p) be the
total number of variations in signs of the polynomial p, and r(p) be the number of positive roots of p
counting multiplicities.

Theorem 5.11 (Descartes’ rule of signs).

r(p) ≤ v(p),

r(p) ≡ v(p) (mod 2).

Example 5.12.

The proof will rely on two lemmas.

Lemma 5.13. Consider polynomial (5.4). If a0an > 0 then r(p) ≡ 0 (mod 2). If a0an < 0 then
r(p) ≡ 1 (mod 2).

Proof. Consider the case a0 > 0, an > 0. This means that p(x) → ∞ if x → +∞ and that p(x) > 0 if
x ∈ (0, ε) therefore the number of intersections of the graph of p with the x-axis must be even. If a
root has even multiplicity then the graph only touches the x-axis, if the multiplicity is odd then the
graph still intersects the axis, therefore the total number of positive roots must be even as the sum
of even number of intersection and even number that comes from root multiplicities. Other cases are
treated similarly. �

The main idea of the proof of Theorem 5.11 is to use the induction, therefore we must have a
connection how a polynomial of degree bn−1 is connected with a polynomial of degree bn. The former
can be obtained by differentiating, hence we will need

Lemma 5.14. Consider polynomial (5.4) and let p′ be its derivative. Then

r(p′) ≥ r(p)− 1. (5.5)

Exercise 1. Recalling the facts that if p has a root of multiplicity k then p′ has the same root of
multiplicity k−1, and Rolle’s theorem that states that if for differentiable f it is true that f(a) = f(b)
then there is c ∈ (a, b) such that f ′(c) = 0, prove this lemma.

Proof of Theorem 5.11. Assume without loss of generality that b0 = 0 in (5.4).
We will prove the theorem by induction.
For the base case, take the polynomial p(x) = a0 + a1x. By considering all possible cases of signs

of a0, a1, we get that it is always true that r(p) = v(p).
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For the induction step suppose that the theorem is true for any polynomial of degree bn − 1 and
again consider (5.4) with b0 = 0. Therefore we have

p′(x) = a1b1x
b1−1 + . . .+ anbnx

bn−1,

and the assumption is that

r(p′) ≤ v(p′), r(p′) ≡ v(p′) (mod 2). (5.6)

Two cases are possible. Case 1: a0a1 > 0. Hence the total number of variations in sings for both p
and p′ is the same, and moreover, r(p) ≡ r(p′) (mod 2) since if a0an > 0 then a1an > 0 or if a0an < 0
then a1an < 0 and invoking Lemma 5.13. In short,

v(p) = v(p′), r(p) ≡ r(p′) (mod 2). (5.7)

Now, (below all the congruences are taken (mod 2))

v(p) = [due to (5.7)] = v(p′) ≡ [due to (5.6)] ≡ r(p′) ≡ [due to (5.7)] ≡ r(p),

hence the second statement in the theorem in this case has been proven.
Similarly,

v(p) = [due to (5.7)] = v(p′) ≥ [due to (5.6)] ≥ r(p′) ≥ [due to (5.5)] ≥ r(p)− 1.

But we already proved that v(p) and r(p) are either even or odd simultaneously, hence it is impossible
to have v(p) = r(p)− 1 therefore, v(p) > r(p)− 1 or, equivalently, v(p) ≥ r(p) as required.

Case 2: a0a1 < 0. Hence,

v(p) = v(p′) + 1, r(p) ≡ r(p′) + 1 (mod 2). (5.8)

Therefore,

v(p) = [due to (5.8)] = v(p′) + 1 ≡ [due to (5.6)] ≡ r(p′) + 1 ≡ [due to (5.8)] ≡ r(p),

and the second statement has been proven.
Similarly,

v(p) = [due to (5.8)] = v(p′) + 1 ≥ [due to (5.6)] ≥ r(p′) + 1 ≥ [due to (5.5)] ≥ r(p)

as required. The proof is finished. �
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